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Introduction: Uncertainty Quantification

Ensemble Forecast

● Physics-Based Model
○ Change Initial Condition, Boundary conditions, Model Specifications
○ High computational cost
○ No uncertainty calibration 

● Machine Learning Model
○ Cross Validation → Vary in data split
○ Deep Ensemble → Vary in weight initialization
○ Monte Carlo Dropout → Randomly deactivate weights, or using dropout layer
○ Still expensive

● Evidential Deep Learning
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Motivation - Aleatoric and Epistemic Uncertainty

Consider two extreme cases:

1. Unpredictable output data (Aleatoric)

2. Noisy input data (Epistemic)
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Input 3 4 3 4 3 4 3 4

Output 1 2 3 4 5 6 7 8

Input 1 2 3 4 5 6 7 8

Output 3 4 3 4 3 4 3 4

ML Ensemble Result: 

Unpredictable output

→ Unreliable predictions for all models

→ Large spread in ensemble result

Noisy input

→ Each subset captures different dynamics

→ Every model makes different predictions

→ Large spread in ensemble result



Aleatoric and Epistemic Uncertainty

Aleatoric Uncertainty 

● a.k.a. Stochastic Uncertainty, unexplained component, EV, etc.
● We cannot make accurate predictions with the input. The output "seems" 

stochastic with the given input. 

Epistemic Uncertainty

● a.k.a. Systematic Uncertainty, explained component, VE, etc.
● The input data is noisy, or some mislabelled samples (thus, systematic), so 

the model trained by those data cannot make accurate predictions.
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Solution - Uncertainty Examples
Consider two extreme cases:

1. Unpredictable output data (Aleatoric)

2. Noisy input data (Epistemic)
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Input 3 4 3 4 3 4 3 4

Output 1 2 3 4 5 6 7 8

Input 1 2 3 4 5 6 7 8

Output 3 4 3 4 3 4 3 4

How to improve model

● Technically, we cannot remedy this problem
● Add other input that better describes the 

output

● Gather model data to make training 
independent from training split

● Reduce model complexity(?), so less 
overfitting

X: Training Process: data noise, model config…

Y: Model Output: Y = f(input)Aleatoric Epistemic



Precipitation Type Prediction Example

Input: 4 meteorological variables (T, Td, u, v)

Output: Rain, Frozen Rain, Sleet, Snow

Problem: Inconsistent precipitation data

    - The data and report are crowd-sourced reports. The outcome may vary due 
to subscale meteorological and societal factors

    - Mislabelled sleet and freezing rain

    - Small Occurrences: sleet and freezing rain

Therefore, we have probabilistic result for each label (multinomial distr.)
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Traditional NN

● Loss: cross-entropy (logistic reg.)
● Output: Softmax, probability

Evidential NN

● Loss: MLE of Dirichlet Distribution
○ Mathematically convenience  

● Output:  probability density function

Evidential Neural Network

* For completeness, the real output equivalent in evidential NN is outputting normal-inverse gamma distribution

Sample Output, Fig 1.c Fig 2.a
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Misclassification Error

Uncertainty, Dirichlet Variance

ENN Loss Function

❖ Maximize the likelihood
❖ Conjugate prior integration, easy in Dir. Distr.

Dirichlet Distribution

KL Div., Regularizer

● Minimize misclassification and 
uncertainty

● Kullback-Leibler Divergence (Eq.11)

○ Prevent premature convergence to 
uniform distribution due to misclassified 
samples. 



Evaluation Metrics

Brier Score (BS)

● Basically feed label into MSE, and trust the process works out, What a BS.

● 0: Perfect Score, 1: Everything is Wrong (Perfectly Wrong?)

Brier Skill Score (BSS)

● Compare BS to Climatology

● 1: Perfect Score,          : Everything is Wrong including climatology
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Results: Confusion Matrices (from supplemental of preprint…)

Key points:
1) Deterministic and evidential NNs have comparable performance
2) Very few sleet and freezing rain observations, as expected
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Results
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Results: Reliability Diagrams

Perfect Reliability
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Reliability = Deviation of predicted <p-type> probability from 
relative frequency in observations 



Results: Reliability Diagrams
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For inputs with predicted P(rain)≈0.16, 
observed P(rain)≈0.19 → model underconfident



Results: Reliability Diagrams
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Model 
underconfident

Model 
overconfident



Results: Reliability Diagrams

Climatology
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Results: Reliability Diagrams

No Resolution Line
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Resolution = Average difference of predicted <p-type> probabilities 
from climatology



Results

● Rain and snow: Evidential > Deterministic
● Freezing rain and sleet: Evidential < Deterministic 17



Results

Discard test? 
1) Sort test set from least certain to most certain. 
2) Iteratively remove N% of least certain data and re-run trained model.

Key points: Test set performance improves as inputs become more “certain”. Similar results 
for ensemble vs. evidential UQ. 

18



Results

Key points
1) Aleatoric uncertainty high near p-type transition boundaries (data insufficiently constrains the output)
2) Epistemic uncertainty high in freezing rain zone (insufficient # of examples)
3) Aleatoric uncertainty > Epistemic uncertainty 19



Results

Key point: Uncertainty trend is physically consistent.
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Main Points

● Evidential NN provides UQ without computational cost ensemble-based NN 
UQ or physics-based UQ methods

● Evidential NN and deterministic NN have comparable p-type prediction 
performance (accuracy and calibration!)

● Aleatoric and epistemic uncertainties are easily computed from evidential NN, 
and make physical sense!
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Discussion Questions

1. Should reducing one type of uncertainty be prioritized over another (if so, in 
what scenarios)?

2. What are some potential applications of uncertainty quantification in your 
research?

3. How much utility does this work have for forecasters? How “trustworthy” is 
this method?

4. Maybe Combine ENN with other neural networks? Like GAN-CERNN
5. EVVE, lol
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