Evidential Deep Learning: Enhancing Predictive Uncertainty Estimation for Earth System Science Applications

Schreck et al. 2024

Machine Learning Journal Club November 19, 2024

Introduction: Uncertainty Quantification

Ensemble Forecast

- Physics-Based Model
 - Change Initial Condition, Boundary conditions, Model Specifications
 - High computational cost
 - No uncertainty calibration
- Machine Learning Model
 - \circ Cross Validation \rightarrow Vary in data split
 - \circ Deep Ensemble \rightarrow Vary in weight initialization
 - Monte Carlo Dropout → Randomly deactivate weights, or using dropout layer
 - Still expensive
- Evidential Deep Learning

Motivation - Aleatoric and Epistemic Uncertainty

Consider two extreme cases:

ML Ensemble Result:

1. Unpredictable output data (Aleatoric)

Input	3	4	3	4	3	4	3	4
Output	1	2	3	4	5	6	7	8

Unpredictable output

- → Unreliable predictions for all models
- → Large spread in ensemble result

2. Noisy input data

(Epistemic)

Input	1	2	3	4	5	6	7	8
Output	3	4	3	4	3	4	3	4

Noisy input

- \rightarrow Each subset captures different dynamics
- → Every model makes different predictions
- → Large spread in ensemble result

Aleatoric and Epistemic Uncertainty

Aleatoric Uncertainty

- a.k.a. Stochastic Uncertainty, unexplained component, EV, etc.
- We cannot make accurate predictions with the input. The output "seems" stochastic with the given input.

$$\mathrm{E}(\mathrm{Var}(Y|X))$$

Epistemic Uncertainty

- a.k.a. Systematic Uncertainty, explained component, VE, etc.
- The input data is noisy, or some mislabelled samples (thus, systematic), so the model trained by those data cannot make accurate predictions.

Solution - Uncertainty Examples

Consider two extreme cases:

1. Unpredictable output data (Aleatoric)

Input	3	4	3	4	3	4	3	4
Output	1	2	3	4	5	6	7	8

2. Noisy input data

(Epistemic)

Input	1	2	3	4	5	6	7	8
Output	3	4	3	4	3	4	3	4

How to improve model

- Technically, we cannot remedy this problem
- Add other input that better describes the output

- Gather model data to make training independent from training split
- Reduce model complexity(?), so less overfitting

 $Var(Y) = \mathbb{E}[Var(Y|X)] + Var(\mathbb{E}[Y|X])$ Aleatoric Epistemic X: Training Process: data noise, model config...

Y: Model Output: Y = f(input)

Precipitation Type Prediction Example

Input: 4 meteorological variables (T, Td, u, v)

Output: Rain, Frozen Rain, Sleet, Snow

Problem: Inconsistent precipitation data

- The data and report are **crowd-sourced reports**. The outcome may vary due to subscale meteorological and societal factors
 - Mislabelled sleet and freezing rain
 - Small Occurrences: sleet and freezing rain

Therefore, we have probabilistic result for each label (multinomial distr.)

Evidential Neural Network

Traditional NN

- Loss: cross-entropy (logistic reg.)
- Output: Softmax, probability

Evidential NN

- Loss: MLE of Dirichlet Distribution
 - Mathematically convenience
- Output: probability density function

Sample Output, Fig 1.c

(a) P-type (categorical problem)

(i) Deterministic:

Predict probabilities for classes Loss = cross-entropy

(ii) Evidential:

Predict evidence for classes

Loss = evidential

Fig 2.a

^{*} For completeness, the real output equivalent in evidential NN is outputting normal-inverse gamma distribution

ENN Loss Function

- Minimize misclassification and uncertainty
- Kullback-Leibler Divergence (Eq.11)
 - Prevent premature convergence to uniform distribution due to misclassified samples.

Dirichlet Distribution

$$f(\mathbf{p}|\alpha) = \begin{cases} \frac{1}{B(\alpha)} \prod_{k=1}^{K} p_k^{\alpha_k - 1} & \text{for } \mathbf{p} \in S_K, B(\alpha) = \frac{\prod\limits_{k=1}^{K} \Gamma(\alpha_k)}{\prod\limits_{k=1}^{K} \Gamma(\sum\limits_{k=1}^{K} a_k)} \\ 0 & \text{otherwise,} \end{cases}$$

Conjugate prior integration, easy in Dir. Distr.

Misclassification Error

$\mathcal{L}_{n}(\mathbf{W}) = \sum_{k=1}^{K} (y_{n,k} - \hat{p}_{n,k})^{2} + \frac{\hat{p}_{n,k}(1-\hat{p}_{n,k})}{S+1} + v_{t} \sum_{n=1}^{N} KL[D(\mathbf{p}_{n}|\tilde{\alpha}_{n})||D(\mathbf{p}_{n}|\mathbf{1})]$

KL Div., Regularizer

+
$$v_t \sum_{n=1}^{N} KL \left[D(\mathbf{p}_n | \widetilde{\alpha}_n) || D(\mathbf{p}_n | \mathbf{1}) \right]$$

Uncertainty, Dirichlet Variance

Evaluation Metrics

Brier Score (BS)

Basically feed label into MSE, and trust the process works out, What a BS.

BS =
$$\frac{1}{NK} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_{n,k} - p_{n,k})^2$$

• 0: Perfect Score, 1: Everything is Wrong (Perfectly Wrong?)

Brier Skill Score (BSS)

Compare BS to Climatology

$$BSS = 1 - \frac{BS_{forecast}}{BS_{climatology}}$$

• 1: Perfect Score, $-\infty$: Everything is Wrong including climatology

Results: Confusion Matrices (from supplemental of preprint...)

Key points:

- 1) Deterministic and evidential NNs have comparable performance
- 2) Very few sleet and freezing rain observations, as expected

Perfect Reliability

Reliability = Deviation of predicted <p-type> probability from relative frequency in observations

For inputs with predicted P(rain)≈0.16, observed P(rain)≈0.19 → model underconfident

Climatology

No Resolution Line

Resolution = Average difference of predicted <p-type> probabilities from climatology

- Rain and snow: Evidential > Deterministic
- Freezing rain and sleet: Evidential < Deterministic

Discard test?

- 1) Sort test set from least certain to most certain.
- 2) Iteratively remove N% of least certain data and re-run trained model.

Key points: Test set performance improves as inputs become more "certain". Similar results for ensemble vs. evidential UQ.

Key points

- 1) Aleatoric uncertainty high near p-type transition boundaries (data insufficiently constrains the output)
- 2) Epistemic uncertainty high in freezing rain zone (insufficient # of examples)
- 3) Aleatoric uncertainty > Epistemic uncertainty

Key point: Uncertainty trend is physically consistent.

Main Points

- Evidential NN provides UQ without computational cost ensemble-based NN UQ or physics-based UQ methods
- Evidential NN and deterministic NN have comparable p-type prediction performance (accuracy and calibration!)
- Aleatoric and epistemic uncertainties are easily computed from evidential NN, and make physical sense!

Discussion Questions

- 1. Should reducing one type of uncertainty be prioritized over another (if so, in what scenarios)?
- What are some potential applications of uncertainty quantification in your research?
- 3. How much utility does this work have for forecasters? How "trustworthy" is this method?
- 4. Maybe Combine ENN with other neural networks? Like GAN-CERNN
- 5. EVVE, lol